If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10n^2+78n-108=0
a = 10; b = 78; c = -108;
Δ = b2-4ac
Δ = 782-4·10·(-108)
Δ = 10404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{10404}=102$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(78)-102}{2*10}=\frac{-180}{20} =-9 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(78)+102}{2*10}=\frac{24}{20} =1+1/5 $
| 1/3a+3/5=1/15a-2/5 | | 15=9+-3r | | (x-4)^2=144 | | 5(1-2x)=8(4x+3) | | 1/2(2x+6)=12 | | y+12.6=15.2 | | 2(4x-3)=-3(3x)+5 | | –8+4s=–16 | | -4=x÷20-5 | | 4(d-3)-(d+1)=2(d-5) | | 4x+3/1-2x=5/8 | | -6(-w)=2(3w-7) | | _5x9-11=-51 | | 3y-2(y+1)=11 | | 9-5x=x+4 | | _2b3+6=24 | | 1-3x=9-5x | | 8x+11=-109 | | -3(2y-5)+6y=5+2(5y-3) | | 4/3+m/3=5/6 | | 6.4+2.1(z-2)=-8.5 | | (1/2)x+3=2x+9 | | z/5-5=31/3 | | 18y-7=5y | | z/5-5=3/1/3 | | -7=-11+s/5 | | (15+n)*6=42 | | 2=8+3/2x | | 5q-7=28 | | x2+19x+84=0 | | 3/4(2x+5=14 | | x+15=30x+3 |